Header
ポスターセッション発表概要
Data Augmentation for Improving Deep Learning in Animal Behavior Classification
○Chao Li,Korkut Tokgoz(東京工業大学),奥村 歩加(信州大学),Jim Bartels,府川 政元(東京工業大学),戸田 和宏,松島 宏明(株式会社電通国際情報サービス),大橋 匠(東京工業大学),竹田 謙一(信州大学),伊藤 浩之(東京工業大学)
Deep learning has shown excellent performance in behavior classification. However, in return, they typically require a considerably larger amount of data to perform well. The cost of data collection is significantly high. This work proposed a random rotation-based data augmentation method with a low cost of data collection and evaluated it using neural networks. More data augmentation techniques in a way that fits the characteristics of animal behavioral data are being investigated for further improvement considered for the real application.
《ポスターセッション一覧》