• セッションNo.30 予防安全と運転支援システムI(OS)
  • 5月21日 パシフィコ横浜 G418+G419 9:30-11:10
  • 座長:深尾 隆則(東京大学)
OS企画趣旨
事故被害の低減や事故発生件数の削減,更にはヒヤリハットの減少を目指し,ドライバーやその周辺環境の安全・快適を実現する先進運転支援システムの開発と予防安全への効果に関する討議を行う.
企画委員会
アクティブセイフティ部門委員会
オーガナイザー
小竹 元基(東京科学大学),濱口 裕(日野自動車),面田 雄一(日本自動車研究所),塚田 竹美(本田技研工業),深尾 隆則(東京大学),宮島 千代美(大同大学)
後日配信がない講演は,「配信」の欄に「✕」を表示していますのでご確認ください。
No. 配信 タイトル・著者(所属)
1

積層型SPAD距離センサーを用いた長距離高分解能LiDAR

鈴木 俊平・加戸 貴洋・藤岡 威吹・山本 晃二・鄭 聖超・垣内 晴也・由井 達哉・宋 敬錫・田口 智之・別府 太郎(ソニーセミコンダクタソリューションズ)

自動運転の実現に向けた長距離・高分解能なLiDARの需要増大を受け,高感度な積層型SPAD距離センサーを用いたLiDARを開発.300mの長距離・広視野(H120° x V25.6°)・高分解能(H0.1° x V0.05°)の測距と,最大1200×1536点のNIR画像を同時取得可能とした.

2

Automotive towards SDV - Challenges and opportunities in ADAS&AV features

Xavier Sellart Ortega (IDIADA Automotive)

The automotive industry is rapidly transitioning toward era of SDV's. Bridging the gap between research and current development in ADAS involves translating cutting-edge research findings into practical, scalable solutions. This process requires close collaboration between academia, industry, and regulagory bodies to ensure that emerging technologies are effectively into real world applicaitons. By fostering collaboraiton, sharing knowldege, and investing in robust testing and validation processes, we can accelerate the adoption of advanced ADAS features, enhancing safety and efficiency on the road.

3

Trustworthy Multimodal Generative AI for ADAS Development

Son Tong・Balakrishnan Ayyanar・Shiye Fang・Kohei Noma・Satoshi Sekine・Theo Geluk・Reiji Takeuchi (Siemens Digital Industries Software)

Generative AI (GenAI) is a powerful technology that learns patterns from data and generates new content, with recent prominent examples of ChatGPT and other large language models (LLMs). This work discusses Multimodal GenAI technologies to accelerate ADAS development involving autonomous driving scenarios and realistic image/video data generation. We use human intelligence, engineering abstraction, and safety requirements as inspiration for trustworthy GenAI models. First, we develop GenAI to reason logged dataset and automatically extracting critical scenarios. Second, methods to generate consistent, controllable, and realistic novel traffic videos will be shown. Finally, we incorporate ADAS standards (EuroNCAP/ISO) to generate simulation-based test cases.

4

農業のスマート安全に資するトラクタドライビングシミュレータ

酒井 憲司(東京農工大学)・松井 正実・田村 隆浩(宇都宮大学)・渡辺 将央(東京農工大学)・風間 恵介(日本大学)・井上 秀彦・滝元 弘樹・原田 一郎(農研機構)・青柳 悠也(琉球大学)・Pongsathorn Raksincharoensak(東京農工大学)

農業死亡事故は労働災害の10倍でトラクタ横転・転落事故が最大要因である.トラクター地形系の強い非線形性が危険挙動を引き起こす.トラクタ設計と道路圃場設計は収量・収益の最大化を目指す.開発したトラクタドライビングシミュレータがこれらの設計論に「安全」を埋め込むために有効であることが明らかとなった.

Back to Top