• セッションNo.71 xEV技術I(OS)
  • 5月23日 パシフィコ横浜 ノース G401+G402 9:30-11:10
  • 座長:真島 隆司(IHI検査計測)
OS企画趣旨
電気自動車,ハイブリッド車,プラグインハイブリッド車および燃料電池車(燃料電池システムおよびその補機類を除く)などの電動車の動力性能に係る制御・システムに関する講演発表を招き,最新技術に関して議論を行う場を提供する.
企画委員会
電気動力技術部門委員会
オーガナイザー
清水 修(東京大学),真島 隆司(IHI検査計測),大塩 伸太郎(日産自動車)
後日配信がない講演は,「配信」の欄に「✕」を表示していますのでご確認ください。
No. 配信 タイトル・著者(所属)
323

Revolutionizing Battery Management
-AI-Powered Digital Twin for Predictive Maintenance and Enhanced Performance-

Nikolaus Keuth・Gerhard Schagerl (AVL List)

This presentation introduces an AI-powered Digital Twin technology designed to enhance battery safety and reduce warranty costs. Leveraging data from development, telematics, and in-vehicle usage, it offers accurate state-of-health monitoring, anomaly detection, and range optimization. Key benefits include a 97% identification rate of battery issues a month before occurrence, a 92% reduction in recall volume, and thrice more accurate range predictions. The AI-powered Digital Twin uses machine learning for continuous BMS improvement and a scalable analytics backend, enhancing battery performance and safety significantly.

324

4輪インホイールモータのトルク制御に基づくスリップ率推定手法の開発

初瀬 渉(日立製作所)・安島 俊幸・山崎 勝(Astemo)

4輪インホイールモータを採用したEV車両の駆動力を制御して車両特性を向上させるため,モータトルクを用いたスリップ率の推定手法の開発に取り組んだ.本講演では,走行中の各輪のモータトルク制御に基づいたスリップ率推定手法について基礎検討し,手法の有効性を試験車両で検証した結果について報告する.

325

ドライバの感性とシンクロする次世代e:HEV制御技術の開発

成元 椋祐・前田 定治・鵜飼 洋平・倉地 忍・齋藤 雅利・村田 直也・長倉 朱里・郡司 宙輝・志岐 一輝(本田技研工業)

環境保護に対する世界的な動向により自動車の電動化が加速している一方,電動車においても感性価値を追及することは自動車を開発するうえで非常に重要である.今回,電動車の感性価値向上の為にドライバーの感性とシンクロする新たなe: HEVシステムの制御技術を開発し,電動車の新たな指標となる性能を確認した.

326

Changes in dQ/dV Depending on Battery Abnormalities

Hyunjun Jo・Sijoong Kim・Hyunjun Jang・Taekyu Kang・Woosung Kim (Hyundai Motor)

As the adoption of electric vehicle(EV) expands, the need for diagnostic technology for the safety of battery is gaining attention. A variety of abnormal conditions may occur in battery, each leading to distinct impacts. The Abnormalities are dependent on each other and affect each other, which makes difficult to understand the exact occurrence mechanism of the event. This research suggests the relationship with the change in dQ/dV depending on diverse battery abnormalities. It shows that dQ/dV changes occur under abnormal conditions, enabling the diagnosis of abnormal cells and also the classificaiton of the abnormalities. We expect the abnormal cells can be identified through monitoring the changes in dQ/dV.

Back to Top